电机故障预测模型

模糊神经网络是模糊系统和神经网络的结合,通过神经网络实现模糊逻辑,同时利用神经网络的自学习能力,动态调整隶属度函数、在线优化控制规则。

基于优化遗传算法的小波神经网络故障诊断模型。首先利用改进的遗传算法对神经网络的权值和阈值进行遗传操作,获得具有一定遍历性的初始权值和阈值,然后再利用神经网络的L-M训练方法进行训练,克服了BP神经网络搜索速度慢和容易陷入局部极值的缺点,保证了训练过程收敛,而且故障识别的能力和精度也大大提高。同时引进比小波分析具有更强高频分析能力的小波包技术,并将其应用到故障信号的特征频率分析中,以得到的结果作为改进遗传神经网络的输入信号,保证训练网络的准确性。通过对电机故障进行仿真试验,证实该方法的有效性及正确性。